identified within the asymmetric unit. All non-H atoms were refined anisotropically, and H atoms were included in fixed calculated positions with $d(\mathrm{C}-\mathrm{H}) 0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=U_{\text {iso }}(\mathrm{C})$ of the parent C atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN. Program(s) used to solve structure: SIR92. Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

The authors thank the University of Southampton and the EPSRC for support, and the latter for a grant to purchase the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1100). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.

Deppisch, B., Gladrow, B. \& Kummer, D. (1984). Z. Anorg. Allg. Chem. 519, 42-52.
Holt, E. M., Alcock, N. W., Sumner, R. H. \& Asplund, R. O. (1979). Cryst. Struct. Commun. 8, 255.
Judd, R. J., Cao, R., Biner, M., Armbruster, T., Burgi, H.-B., Merbach, A. E. \& Ludi, A. (1995). Inorg. Chem. 34, 5080-5083.

Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1994). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1997). C53, 1226-1228

(8-Aminoquinoline- N, N^{\prime})dichlorodimethyltin(IV)

Alan Hazell, ${ }^{a}$ Kar Fong Thong, ${ }^{b}$ Jiexiang Ouyang ${ }^{b}$ and Lian Ee Khoo ${ }^{b}$

${ }^{a}$ Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark, and ${ }^{b}$ School of Science, National Institute of Education, 469 Bukit Timah Road, Singapore 259756. E-mail: ach@kemi.aau.dk
(Received 18 March 1997; accepted 24 April 1997)

Abstract

The title compound, $\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, has been prepared from dimethyltin dichloride and 8 -aminoquinoline. The coordination of the Sn atom is octahedral,

with the Cl atoms trans to the N atoms of 8 -aminoquinoline, with bond distances $\mathrm{Sn}-\mathrm{Cl} 2.547$ (3) and $2.619(3), \mathrm{Sn}-\mathrm{N}_{s p^{2}} 2.322(7), \mathrm{Sn}-\mathrm{N}_{s p^{2}} 2.357$ (8), and $\mathrm{Sn}-\mathrm{C} 2.115(10)$ and 2.122 (10) \AA. Both amino protons are intermolecularly hydrogen bonded to Cl atoms of neighbouring molecules.

Comment

Extensive studies have been carried out on the $1: 1$ adducts of diorganotin dichloride with symmetric (e.g. 1,10 -phenanthroline) and asymmetric N, N^{\prime}-chelating agents (e.g. 2-aminomethylpyridine) owing to a potential link between antitumour activity, the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angle and the $\mathrm{Sn}-\mathrm{N}$ bond distance (Crowe, Smith \& Atassi, 1984; Saxena \& Huber, 1989). However, there have been no structural reports on diorganotin dihalide adducts of 2 -aminomethylpyridine even though some of these adducts were reported to possess antitumour activity (Crowe et al., 1984). We have studied the reactions of 8 -aminoquinoline, (I), which is an asymmetric N, N^{\prime}-bidentate ligand closely resembling 2 -aminomethylpyridine, (II).

An X-ray structural determination of diphenyldi-chloro(8-aminoquinoline)tin(IV) revealed that the Cl atoms occupied the two axial positions of the sixcoordinated Sn atom (Bengtson et al., 1996). In a continuation of our attempts to prepare compounds displaying antitumour activity, we now report the synthesis and crystal structure of the dimethyldichloro(8-aminoquinoline)tin(IV) adduct, (III). IR measurements show two medium intensity bands (567 and $494 \mathrm{~cm}^{-1}$) arising from the $\mathrm{Sn}-\mathrm{CH}_{3}$ stretching vibrations, suggesting that the two methyl groups attached to the Sn atom are trans to each other (Petrosyan, Yashina \& Reutov, 1976). Furthermore, calculations using equations (1) and (3) of Lockhart \& Manders (1986), based on the ${ }^{2} J_{\mathrm{Sn}_{\mathrm{n}}-\mathrm{CH}_{3}}$ coupling constant value (113.4 Hz) obtained from the proton spectrum of the title adduct give a $\mathrm{Me}-\mathrm{Sn}-\mathrm{Me}$ angle of 166.8°, while the ${ }^{1} J_{S_{n}-\mathrm{c}}$ coupling constant of 987.0 Hz gives an angle of 163.3°. An X-ray structure analysis confirmed the proposed trans configuration but found a $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle closer to 180°. The $\mathrm{Sn}-\mathrm{Cl}$ distances are longer than those found for di-phenyldichloro(8-aminoquinoline)tin(IV), 2.502 (1) and 2.518 (1) \AA. This is to be expected (Hall \& Tiekink, 1996) because dimethyltin dichloride is a weaker Lewis
acid than diphenyltin dichloride and because the Sn Cl bonds participate in $\mathrm{Sn}-\mathrm{Cl} \cdots \mathrm{N}$ hydrogen bonds for the dimethyltin dichloride adduct. The $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angle is however larger than the minimum of 103° which Kabanos et al. (1992) consider to be an added requirement for antitumour activity in these compounds. Related dimethyltin dichloride adducts in which the ligand is related to 2-aminomethylpyridine but with the amino group replaced by an imino group (Kabanos et al., 1992; Teoh, Teo, Lee \& Fun, 1994) show the reverse situation, i.e. $\mathrm{Sn}-\mathrm{N}$ bonds greater than $2.39 \AA$ and $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angles less than 103°.

Fig. 1. View showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels and H atoms are drawn as small circles of arbitrary radii.

The molecules are linked in infinite chains, parallel to the c axis, by $\mathrm{Sn}-\mathrm{Cl} 1 \cdots \mathrm{~N} 2(x, y, z-1)$ hydrogen bonds, the chains are themselves linked in pairs by $\mathrm{Sn}-\mathrm{Cl} 2 \cdots \mathrm{~N} 2(2-x, 1-y, 2-z)$ hydrogen bonds. The $\mathrm{Sn}-\mathrm{Cl}$ bonds which form the infinite chains are significantly longer than those in the cross-links. The $\mathrm{N} \cdots \mathrm{Cl}$ distances are similar to those in bis(3-methyladenine)dichlorodimethyltin(IV) [3.211 (4) \AA; Hazell, Ouyang \& Khoo, 1997] and in 8 -aminoquinolium chloride [3.030 (7) \AA; Bengtson et al., 1996]. As with the di-

Fig. 2. The hydrogen-bonding scheme. Symmetry codes (i) $x, y, z-1$; (ii) $2-x, 1-y, 2-z$; (iii) $2-x, 1-y, 1-z$.
phenyl compound, the $\mathrm{Sn}-\mathrm{N}_{s p^{2}}$ distance is longer than $\mathrm{Sn}-\mathrm{N}_{s p_{a}^{3}}$, but both are shorter than the limiting value of 2.39 A which Crowe, Smith \& Atassi (1984) suggest must be exceeded for this type of compounds to exhibit antitumour activity.

Experimental

The title compound was synthesized by mixing equimolar amounts of dimethyltin dichloride and 8 -aminoquinoline in anhydrous benzene. The product upon recrystallization in benzene yielded the title adduct (m.p. 399-402 K) which has the following microanalytical data: $\mathrm{C} 36.20, \mathrm{H} 4.01$ and N 7.84\%; calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Sn}$: C 36.31, H 3.88 and N 7.70\%.

Crystal data

$\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=363.84$
Triclinic
$P 1$
$a=9.678(8) \AA$
$b=10.701(9) \AA$
$c=7.280(6) \AA$
$\alpha=90.15(5)^{\circ}$
$\beta=104.32(5)^{\circ}$
$\gamma=71.59(5)^{\circ}$
$V=691(1) \AA^{3}$
$Z=2$
$D_{x}=1.749 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Huber four-circle diffractom-
eter
$\theta / 2 \theta$ scans
Absorption correction:
numerical by integration
$T_{\text {min }}=0.432, T_{\text {max }}=0.706$
2642 measured reflections
2432 independent reflections
1925 reflections with
$I>3 \sigma(I)$

Refinement

Refinement on F
$R=0.055$
$w R=0.066$
$S=1.671$
1925 reflections
145 parameters
H atoms constrained
$w=1 /\left\{\left[\sigma_{\mathrm{cs}}\left(F^{2}\right)\right.\right.$
$\left.\left.+1.03 F^{2}\right]^{1 / 2}-|F|\right\}^{2}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 50 reflections
$\theta=10.0-14.3^{\circ}$
$\mu=2.21 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block
$0.325 \times 0.300 \times 0.200 \mathrm{~mm}$
Brown

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{C} 10$	$2.115(10)$	$\mathrm{Sn}-\mathrm{N} 2$	$2.322(7)$
$\mathrm{Sn}-\mathrm{C} 11$	$2.122(10)$	$\mathrm{Sn}-\mathrm{Cl1}$	$2.619(3)$
$\mathrm{Sn}-\mathrm{N} 1$	$2.357(8)$	$\mathrm{Sn}-\mathrm{Cl} 2$	$2.547(3)$

$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl} 2$	$105.4(1)$	$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl1}$	$91.2(3)$
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{N} 1$	$94.4(2)$	$\mathrm{N} 1-\mathrm{Sn}-\mathrm{N} 2$	$73.0(3)$
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{N} 2$	$167.4(2)$	$\mathrm{N} 1-\mathrm{Sn}-\mathrm{C} 10$	$90.7(3)$
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{C} 10$	$86.9(3)$	$\mathrm{N} 1-\mathrm{Sn}-\mathrm{C} 11$	$88.6(3)$
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl1}$	$90.1(3)$	$\mathrm{N} 2-\mathrm{Sn}-\mathrm{C} 10$	$93.2(3)$
$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{N} 1$	$160.2(2)$	$\mathrm{N} 2-\mathrm{Sn}-\mathrm{C} 11$	$89.4(4)$
$\mathrm{Cl2}-\mathrm{Sn}-\mathrm{N} 2$	$87.2(2)$	$\mathrm{C} 10-\mathrm{Sn}-\mathrm{Cl1}$	$176.9(4)$
$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl0}$	$90.5(3)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{HN} 2 A \cdots \mathrm{Cl1}$	0.950	2.369	$3.285(9)$	161.7
$\mathrm{~N} 2 — \mathrm{HN} 2 B \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.950	2.332	$3.274(8)$	171.2
Symmetry codes: (i) $x, y,-1+z$; (ii) $2-x, 1-y, 2-z$.				

H atoms of the aminoquinoline were kept fixed at calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$), those of the methyl groups were kept fixed at their observed positions. $U_{\text {iso }}$ was set to be 20% larger than $U_{\text {eq }}$ for the atom to which they were attached. The distances from Sn to the minimum and maximum values of $\Delta \rho$ are 0.94 and $1.22 \AA$, respectively.
Data collection: MAD (Allibon, 1995). Cell refinement: MAD. Data reduction: KRYSTAL (Hazell, 1995). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) and KRYSTAL. Program(s) used to refine structure: modified ORFLS (Busing, Martin \& Levy, 1962). Molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and KRYSTAL. Software used to prepare material for publication: KRYSTAL.

We are indebted to Nanyang Technological University (Grants No. RP18/96KLE and RG76/94) and to the Carlsberg Foundation and to the Danish Science Research Council for the diffractometer.

[^0]
References

Allibon, J. (1995). MAD (Aarhus version). Institut Laue-Langevin, Grenoble, France.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Bengtson, A., Goh, N. K., Hazell, A., Khoo, L. E., Ouyang, J. \& Petersen, K. R. (1996). Acta Chem. Scand. 50, 1020-1024.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Crowe, A. J., Smith, P. J. \& Atassi, G. (1984). Inorg. Chim. Acta, 93, 179-184.
Hall, V. J. \& Tiekink, E. R. T. (1996). Acta Cryst. C52, 2143-2145.
Hazell, A. (1995). KRYSTAL. An Integrated System of Crystallographic Programs. Aarhus University, Denmark.
Hazell, A. Ouyang, J. \& Khoo, L. E. (1997). Acta Cryst. C53, 406408.

Kabanos, T. A., Keramidas, A. D., Mentzafos, D., Russo, U., Tersis, A. \& Tsangaris, J. M. (1992). J. Chem. Soc. Dalton Trans. pp. 2729-2733.
Lockhart, T. P. \& Manders, W. F. (1986). Inorg. Chem. 25, 892-895.
Petrosyan, V. S., Yashina, N. S. \& Reutov, O. A. (1976). Adv. Organomet. Chem. 14, 63-97.
Saxena, A. K. \& Huber, F. (1989). Coord. Chem. Rev. 95, 109-123.
Teoh, S.-H., Teo, S.-B., Lee, L.-K. \& Fun, H.-K. (1994). J. Coord. Chem. 33, 69-73.

Acta Cryst. (1997). C53, 1228-1230

Chlorodimethyl(N-pyrrolidinecarbo-dithioato-S, $\left.S^{\prime}\right) \mathbf{t i n}(\mathbf{I V})$

Abdul Hamid Othman, ${ }^{a}$ Hoong-Kun Fun ${ }^{b}$ and Bohari M. Yamin ${ }^{a}$
${ }^{a}$ Department of Chemistry, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and ${ }^{b} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hamie@pkrisc.cc. ukm.my

(Received 22 July 1996; accepted 27 March 1997)

Abstract

The Sn atom in $\left[\mathrm{SnCl}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NS}_{2}\right)\left(\mathrm{CH}_{3}\right)_{2}\right]$ is in a distorted trigonal bipyramidal environment, with the two methyl C atoms and an S atom in the equatorial plane, and the Cl and other S atom occupying axial positions. The carbodithioate ligand is unsymmetrically coordinated to the Sn atom with $\mathrm{Sn}-\mathrm{S}$ distances of 2.7555 (10) and 2.4825 (12) Å.

Comment

Although a number of pentadentate diorganotin complexes of the type $R_{2} \mathrm{ClSnS}_{2} \mathrm{C}$ have been reported, examples of structural studies are limited to $\mathrm{Me}_{2} \mathrm{SnCl}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right), \quad \mathrm{PhBuSnCl}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$, $\mathrm{Ph}_{2} \mathrm{SnCl}\left(\mathrm{S}_{2} \mathrm{CO}^{i} \mathrm{Pr}\right)$ (Furue, Kimura, Yasuoka, Kasai \& Masao, 1970; Wei, Kumar Das \& Sinn, 1985; Dakternieks, Hoskins, Jackson, Tiekink \& Winter, 1985). In these complexes, the Sn atom is asymmetrically bonded to the two S atoms with an average difference in the $\mathrm{Sn}-\mathrm{S}$ bond lengths of $0.3 \AA$, similar to that observed in the title compound, $\mathrm{Me}_{2} \mathrm{ClSn}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}\right]$, (1). However, the $\mathrm{Sn}-\mathrm{S}$ distances in the related 1,2-dithio anionic complex 2-chloro-2,2-diphenyl-5-methyl-1,3,2benzodithiastannole are similar (Sau, Day \& Holmes, 1981). As in (1), the chloro group in all these complexes invariably occupies an axial position with the two organo groups in equatorial positions.

(1)

The displacement ellipsoid plot of (1) with the numbering scheme is shown in Fig. 1. The geometry about the Sn atom is a distorted trigonal bipyramid with the Cl and S 1 atoms in axial positions and the two methyl C atoms and S 2 in the equatorial plane. Despite

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1483). Services for accessing these data are described at the back of the journal.

